

INDIAN SCHOOL AL WADI AL KABIR

Mid Term Examination (2024-25)

Class: IX Sub: MATHEMATICS Max Marks: 80
Time:3 hours

General Instructions:

- 1. This question paper has 5 sections- A, B, C, D and E.
- 2. Section A- PART-1 (MCQ) comprises of 18 questions of 1 mark each
- 3. Section A- PART-2 (Assertion and Reason) comprises of 2 questions of 1 mark each.
- 4. Section B- (Short answer) comprises of 5 questions of 2mark each.
- 5. Section C- (Long answer) comprises of 6 questions of 3 marks each.
- 6. Section D- (Long answer) comprises of 4 questions of 5 marks each.
- 7. Section E comprises of 3 Case study-based questions of 4 marks each with sub parts of the values 1, 1 and 2 marks each respectively.
- 8. All Questions are compulsory. However, an internal choice has been provided for certain questions.

	A	В		C	13	D			
Q. 4.	In the given figure, AOB is a straight line, then, the value of x is:								
	A	В		C		A D	о в 15°		
Q. 5.	The points (3, -5) and (-5, 3) lie inrespectively.								
	A	В	IV and II quadrant	C		D			
Q. 6.	Euclid stated that all right angles are equal to each other in the form of								
	A	В		C		D	a postulate		
Q. 7.	In the figure, if $m n$, then the value of x is								
	A	В	85°	C		D			
Q.8.	The co-ordinates of a point whose ordinate is 6 and which lies on y-axis are:								
	A	(0, 6) B		C		D			
Q. 9.	The base of a right triangle is 6 cm and hypotenuse is 10 cm. Its area is:								
	A	В		C	24 cm ²	D			
Q. 10.	In $\triangle ABC$ and $\triangle DEF$, $AB = DE$, $\angle A = \angle D$. The two triangles will be congruent by SAS congruence if								

Q.11.	In order to draw a histogram which is represented by the following frequency distribution, the adjusted frequency for the class $25 - 45$ is:									
			0 - 5	5 - 10	10 - 20	20 - 25	25 - 45			
	Fr	requency	8	12	7	23	20			
	A		В			C		D	5	
Q.12.	The value of $\left[\left((81)^{\frac{-1}{2}}\right)^{\frac{-1}{4}}\right]^2$ is									
	A	3	В		(C		D		
Q.13.	3. If $(a+7, -7) = (9, b+2)$, then the value of a and b respectively are:									
	A	2, -9	В			C		D		
Q.14.	If the	If the area of an equilateral triangle is $16\sqrt{3}$ cm ² , then its perimeter is:								
	A		В	24 c1	m	C		D		
Q.15.	Each of the two equal sides of an isosceles right triangle is 10 cm long, its area is									
	A	50cm ²	В		(С		D		
Q.16.	The class mark of the class 85-90 is									
	A		В			C 8'	7.5	D		
Q.17.	Euclid divided his famous treatise "The Elements" into:									
	A	13 chapters	В			С		D		
Q. 18.	A rational number between -3 and 3 is									
	A	0	В			С		D		
		PART-2 ASSERTION AND REASON (1 mark each)								

Q.19	Statement A (Assertion): The area of an equilateral triangle with side 2 cm is $\sqrt{3}$ cm							
	Statement R (Reason): If the side of an equilateral triangle is 'a' unit, then area of an							
	equilateral triangle is $\frac{\sqrt{3}a^2}{4}$ sq units.							
	A) Both Assertion (A) and Reason (R) are true and Reason	(R) is the correct explanation of						
	Assertion (A).							
Q.20	Statement A (Assertion): The rationalizing factor of $3\sqrt{2} - 2\sqrt{3}$ is $3\sqrt{3} - 2\sqrt{3}$							
	Statement R (Reason): If the product of two irrational numbers is rational, then each called the rationalizing factor of the other.							
	(D) Assertion (A) is false but Reason (R) is true.							
	Section B							
	Short answer questions (2 mark	(each)						
Q. 21.	Ramesh and Rutuja have the same weight. If they each gain weight by 2 kg, how will their							
	new weights be compared? State the axiom used.							
	Let the weight of Ramesh be x kg So, weight of Rutuja = x kg							
	When each gain weight by 2kg,							
	Weight of Ram = $(x + 2)$ kg							
	Weight of Ravi = $(x + 2)$ kg							
	Axiom: If equals are added to the equals, the wholes are equal.							
Q.22.	Based on the below given figure, answer the following que	stions:						
	a) Coordinates of the point F. (6,0)	8 G 4⊗H Θ						
	b) If the coordinates of G and A is written as	3 - 2 - 0						
	G(a, b) and $A(x, y)$, then evaluate ax-by? -28	6 6 1 6						
	c) The perpendicular distance of the point D from the	-7-6-5-4-3-2-10 1 2 3 4 5 6 7						
	x-axis. 1	0 1 4						
	d) Ordinate of the point C. 0	B5+ -6 ⊗E						
		×7+						

Q.23.

In the given figure, AB = BC and OB bisects $\angle ABC$,

then prove that OA=OC.

Given, AB = BC and $\angle ABO = \angle CBO$

In \triangle OAB and \triangle OCB,

AB = BC (given)

 $\angle ABO = \angle CBO (OB bisects \angle ABC)$

OB = OB (common side)

 $\triangle OAB \cong \triangle OCB$ (SAS congruency)

 \therefore OA = OB cpct

Q.24.

Represent $\sqrt{8.5}$ on a number line.

$$AB=8.5, BC=1cm$$
 (½)

Getting point O $(\frac{1}{2})$

Drawing semi circle (½)

Constructing perpendicular at B to get the point D

From B Drawing an arc to cut the number line at E (1/2)

Or

(1/2)

Simplify
$$3\sqrt{45} - \sqrt{125} - \sqrt{50} = 9\sqrt{5} - 5\sqrt{5} - 5\sqrt{2}$$

 $(1\frac{1}{2})$

$$=4\sqrt{5}-5\sqrt{2}$$

 $(\frac{1}{2})$

Q.25.

5. The sides of a triangle are in the ratio 25:17:12 and its perimeter is 540 m. find the area if the triangle.

Let the sides of the triangle be 12a,25a,17a.

We know that perimeter of the triangle = Sum of all sides

⇒12a+25a+17a=54a

Given, perimeter of the triangle =540m

⇒54a=540m

a=10m

So, the lengths of the sides of triangle are

12a=120m

25a=250m

17a=170m

We can use Heron's formula to get the area of triangle

Area of triangle s=Vs(s-a)(s-b)(s-c).

and s=a+b+c/2

s=(120+250+170)/2

=270m (½)

Substituting the sides 120 m, 250 m and 170 m in the Heron's formula, we get

√270(270-120)(270-250)(270-170) (½)

=V270×150×20×100

	=v9×30×30×5×20×20×5							
	=3×30×5×20 =9000m ² (½)							
	=9000111 (½)							
	Section C Short Answer questions (3 mark each)							
Q.26.	State any three Euclid's axiom.							
Q.27.	Express $0.6 + 0.\overline{7} + 0.4\overline{7}$ in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$.							
	Let $y=0.\overline{7}$ So, $y = 0.7777$	1/2) (1/2) (1) (1/2 + 1/2)						
	Or Simplify by rationalizing the denominator $\frac{7+3\sqrt{5}}{3+\sqrt{5}} + \frac{7-3\sqrt{5}}{3-3\sqrt{5}}$	<u>/5</u>						
	$\frac{7+3\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}} = \frac{21-7\sqrt{5}+9\sqrt{5}-15}{9-5} = \frac{6+2\sqrt{5}}{4} = \frac{3+\sqrt{5}}{2}$	$(1\frac{1}{2})$						
	$\frac{7-3\sqrt{5}}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}} = \frac{21+7\sqrt{5}-9\sqrt{5}-15}{9-5} = \frac{6-2\sqrt{5}}{4} = \frac{3-\sqrt{5}}{2}$	(1)						
	$\frac{3+\sqrt{5}}{2} + \frac{3-\sqrt{5}}{2} = 3$	(½)						

Q.28.

In the given figure, AB = FE, BC = ED, $AB \perp BD$, $FE \perp EC$. Prove that $\triangle ABD \cong \triangle FEC$

Given, BC = ED

$$BC+CD = ED+CD$$

 $(\frac{1}{2})$

$$BD = EC$$

 $(\frac{1}{2})$

In ΔABD, ΔFEC

$$AB = FE$$
 (given)

 $(\frac{1}{2})$

$$\angle ABD = \angle FEC$$
 (given)

 $(\frac{1}{2})$

$$BD = EC$$
 (from above)

 $(\frac{1}{2})$

$$\triangle ABD \cong \triangle FEC$$
 SAS congruence

 $(\frac{1}{2})$

Q.29. Study the bar graph representing the number of persons age groups in a town. Observe the bar graph and answer the following questions:

- i) 6700
- 300 ii)
- 1:3 iii)

Q.30.

The lengths of the sides of a triangle are 7 cm, 13 cm and 12 cm. Find the area of the triangle. Also find the length of perpendicular from the opposite vertex to the side whose length is 12 cm.

Let,
$$a = 7 \text{ cm}, b = 13 \text{ cm}, c = 12 \text{ cm}$$

$$s = \frac{a+b+c}{2} = \frac{7+13+12}{2} = \frac{32}{2} = 16 \text{ cm}$$

 $(\frac{1}{2})$

Area of
$$\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{16(16-7)(16-13)(16-12)}$$

$$= \sqrt{16 \times 9 \times 3 \times 4} = 24\sqrt{3} \text{ cm}^2$$
(1)

Let the length of perpendicular from opposite vertex to the side whose length is $12\ \mathrm{cm}$ be x.

So,
$$\frac{1}{2} \times x \times 12 = 24\sqrt{3}$$
 (1/2)

$$\Rightarrow x = 4\sqrt{3} \text{ cm}$$
 (½)

Or

A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m, how much area of grass field will each cow be grazing?

Let ABCD be a rhombus of side 30m

$$s = \frac{a+b+c}{2} = \frac{30+30+48}{2} = \frac{108}{2} = 54 \text{ m}$$

Area of triangle=Vs(s-a)(s-b)(s-c)

$$=\sqrt{s(s-a)(s-b)(s-c)} = \sqrt{54(54-30)(54-30)(54-48)}$$
$$= \sqrt{54 \times 24 \times 24 \times 6} = 432m^2$$

Area of rhombus = $2 \times 432 = 864m^2$

Area occupied by each cow = $864/18=48m^2$

Prove that if two lines intersect each other, then the vertically opposite angles are equal. Given: If two lines i.e. AB & CD intersect each other. They have two pair of opp. Angles ∠AOC, ∠DOB; ∠AOD, ∠COB.

To prove :-
$$\angle AOC = \angle DOB \& \angle AOD = \angle COB$$
 (½)

Proof:-

$$\angle AOD + \angle BOD = 180^{\circ} [linear pair] \underline{\hspace{1cm}} (2)$$

from eq. (1) & (2)

$$\angle AOC + \angle AOD = \angle AOD + \angle BOD$$
 (½)

i.e.
$$[\angle AOC = \angle BOD]$$
 (½)

Similarly [∠AOD=∠COB] Hence proved.

Or

 $(\frac{1}{2})$

In the given figure, Ray OS stands on a line PQ. Ray OR and ray

OT are angle bisectors of ∠POS and ∠SOQ respectively. If

 \angle SOQ=x, find \angle ROT.

Ray OS stands on the line PQ.

Therefore,
$$\angle POS + \angle SOQ = 180^{\circ}$$
 (Linear pair) (½)

Let ∠SOQ=x°

Thus ∠POS=180°-∠SOQ

$$\angle POS=180^{\circ}-x^{\circ}$$
 (½)

Now, as ray OR and ray OT are angle bisectors so

$$\angle SOT = \frac{1}{2} \times \angle SOQ$$

Thus,
$$\angle SOT = \frac{1}{2} \times x^{\circ}$$
 (1/2)

And $\angle ROS = \frac{1}{2} \times \angle POS$

Thus,
$$\angle ROS = \frac{1}{2} \times (180^{\circ} - x^{\circ})$$

$$\angle ROS = 90^{\circ} - \frac{x^{\circ}}{2}$$
 (½)

Here ∠ROT=∠ROS+∠SOT

$$\angle ROT = 90^{\circ} - \frac{x^{\circ}}{2} + \frac{x^{\circ}}{2} \tag{1/2}$$

 $\angle ROT=90^{\circ}$ (%)

Section D

Long answer questions (5 mark each)

Q. 32. If $\frac{2+\sqrt{3}}{2-\sqrt{3}} + \frac{2-\sqrt{3}}{2+\sqrt{3}} + \frac{\sqrt{3}-1}{\sqrt{3}+1} = a + b\sqrt{3}$, find the values of a and b.

$$\frac{2+\sqrt{3}}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}} + \frac{2-\sqrt{3}}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} + \frac{\sqrt{3}-1}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1}$$
 (1\frac{1}{2})

$$\frac{4+4\sqrt{3}+3}{4-3} + \frac{4-4\sqrt{3}+3}{4-3} + \frac{3-2\sqrt{3}+1}{3-1} = 7 + 4\sqrt{3} + 7 - 4\sqrt{3} + \frac{4-2\sqrt{3}}{2}$$
 $(1\frac{1}{2})$

$$16 - \sqrt{3} = a + b\sqrt{3} \tag{1}$$

$$a = 16, b = -1$$
 (\frac{1}{2} + \frac{1}{2})

Or

Evaluate:
$$\frac{4}{(216)^{\frac{-2}{3}}} - \frac{5}{(256)^{\frac{-3}{4}}} + \frac{2}{(243)^{\frac{-1}{5}}}$$

	$\frac{4}{(6^3)^{\frac{-2}{3}}} - \frac{5}{(4^4)^{\frac{-3}{4}}} +$	2		$(1\frac{1}{2})$						
		$(3^5)^{\frac{1}{5}}$			_					
	$\frac{4}{6^{-2}} - \frac{5}{4^{-3}} + \frac{2}{3^{-1}}$			$(1\frac{1}{2})$						
	$=4\times6^2-5\times4$	$4^3 + 2 \times 3$	3		(½)					
	=144 - 320+6= -	-170			$(1 + \frac{1}{2})$	½)				
Q. 33.	Plot the following points in a graph paper. Join the points in order and write the name of the figure obtained: A $(-3, 2)$, B $(-7, -3)$, C $(6, -3)$, D $(2,2)$.									
	Plotting points (3)									
	Joining points (1)									
	Figure: trapezium	(1)								
Q. 34.	Construct a histogram with a frequency polygon on the same graph from the following distribution of total marks obtained by 55 students of class IX in the final examination.									
	Marks	140 - 150	150 - 160	160 - 170	170 - 180	180 - 190	190 - 200			
	Number of students	8	10	15	12	7	3			
	6 bars (3)									
	Frequency polygon	(2)								
Q.35.	In the given figure, AB CD, CD EF. Find the value of x, y, z and									
	W.									
	AB CD, AT is the		(1)			30° X	P _{110°} D			
	$y=130^{\circ}$ (co interior angles) (1) AB CD, QS is the transversal									
	w=80° (alternate interior angles) (1)									
	CD EF, ST is the transversal									
	$z=70^{\circ}$ (co interior angles) (1)									
	$x+z+30^{\circ} = 180^{\circ}$ Angles on a straight line (1)									
	$x+70^{\circ}+30^{\circ} = 180^{\circ}$									
	$x=80^{\circ}$ (1)									

Section E

CASE STUDY BASED QUESTIONS(4 mark each)

Q.36. **CASE STUDY-I**

Write the decimal form of $\frac{5}{8}$ and state if it is terminating or non terminating. (1) i)

$$\frac{5}{8} = 0.625, terminating \qquad (\frac{1}{2} + \frac{1}{2})$$

$$2\sqrt{21} \div 2\sqrt{3} = 2\sqrt{7}$$

ii) Divide
$$4\sqrt{21} \div 2\sqrt{3} = 2\sqrt{7}$$
 (1)

iii) a) If
$$x = \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} - \sqrt{6}}$$
, then find the value of $\left(x + \frac{1}{x}\right)^2$.

$$= \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} - \sqrt{6}} \times \frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} + \sqrt{6}} = \frac{7 + 2\sqrt{42} + 6}{7 - 6} = 13 + 2\sqrt{42}$$

$$\frac{1}{x} = 13 - 2\sqrt{42}$$
(1/2)

$$\frac{1}{x} = 13 - 2\sqrt{42}$$

$$\left(x + \frac{1}{x}\right)^2 = \left[13 + 2\sqrt{42} + 13 - 2\sqrt{42}\right]^2 = 26^2 = 676 \quad (\frac{1}{2}) + (\frac{1}{2})$$

b) Find two irrational numbers between $\frac{1}{5}$ and $\frac{3}{4}$

any two

Q.37. **CASE STUDY-II:**

What will be the semi-perimeter of the flag for the above-mentioned dimension $S = \frac{a+b+c}{2} = \frac{41+28+15}{2} = \frac{84}{2} = 42cm$ $(\frac{1}{2}) + (\frac{1}{2})$

Find the area of cloth required for making one flag. $126 cm^2$ (1) ii)

a) If the rate of the cloth is $\stackrel{?}{\underset{?}{?}}$ 2 per cm^2 , find the total cost of 300 flags. iii)

Area=
$$126 \times 300cm^2 = 37800cm^2$$
 (1)

$$Cost = 37800cm^2 \times 2 = 75600 \tag{1}$$

Or

b) The perimeter of an isosceles triangle is 40 cm. The ratio of the equal side to its base is 3:4. Find the area of the triangle. (2)

Given, perimeter = 40 cm

Let the sides be 3x, 4x

$$3x+3x+4x=40$$

$$10x = 40$$

$$X=4$$

$$3x=12, 4x=16$$

(1)

S=40/2=20

Area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

= $\sqrt{20(20-12)(20-16)(20-12)}$ = $32\sqrt{5}$ cm² (½ + ½)

Q.38.

CASE STUDY-III

A 0 50 90 B

 $\angle BOD = 90^{\circ}, \angle DOF = 50^{\circ}.$

Based on the above information answer the following question:

- i) Find the value of m. 90° (1)
- ii) Find the value of x. 40° (1)
- iii) a) Find the value of reflex ∠COE. 310° (2)

Or

b) In the figure given PQ and RS intersect each other at a point O.

If
$$\angle POR : \angle ROQ = 4.5$$
, find $\angle POS$ and $\angle SOQ$. (2)

let $\angle POR$, $\angle ROQ$ be 4x, 5x

$$4x+5x=180^{\circ}$$
 (linear pair)

 $9x = 180^{\circ}$

$$X=20^{\circ}$$
 (½)

$$4x=80^{\circ}, 5x=100^{\circ}$$
 (½)

$$\angle POS=100^{\circ}$$
 voa (½)

$$\angle SOQ=80^{\circ}$$
 voa $(\frac{1}{2})$
